
JOURNAL OF COMPUTATIONAL PHYSICS 95, 101-l 16 (1991) 

Timestepping Lagrangian Particles in Two 
Dimensional Eulerian Flow Fields 

DAVE RAMSDEN 

Daleth Research, 1255 Oscar Street, 
Victoria, British Columbia, Canada VSV 2X6 

AND 

GREG HOLLOWAY 

Institute of Ocean Sciences, Victoria, British Columbia, Canada V8L 482 

Received September 7, 1989; revised March 9, 1990 

The speed and accuracy of different methods for the interpolation and timestepping of 
Lagrangian particles in Eulerian velocity fields are examined. Two circumstances are con- 
sidered: (1) a steady flow field in which particles trace closed orbits along constant stream- 
function values; and (2) decaying two-dimensional turbulence in which vorticity is conserved 
within a correction for dissipation. A fourth-order Runge-Kutta timestepping is shown to give 
best results for the steady flow field. Tracking an invariant along particle paths in a fully eddy 
active case is shown to be relatively insensitive with regard to choice of interpolation or 
timestepping method. The cause of this insensitivity is shown to be a resolution problem of 
the Eulerian field dynamics and methods are outlined to ameliorate the problem. 0 1991 
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INTRODUCTION 

The extensive use of drifters in oceanic experiments creates large volumes of data 
which can be compared to drift tracks derived from numerical ocean circulation 
models. Flow parameters such as eddy diffusion coefficients and eddy kinetic energy 
per unit mass can be estimated from drifter statistics (e.g., Rossby et al. [ 1 ] and 
Freeland et al. [a]). If practical inferences are to be drawn from statistics derived 
from particles in a numerical model, it is important to estimate the efficiencies and 
accuracies of various interpolation and stepping methods. 

This paper examines these issues in the context of two-dimensional turbulence 
modelled by the dealiased spectral transform method after Orszag [3], The 
vorticity evolution equation is solved on a periodic (x, y) rectangular domain: 

;+J(i, I)= -D, 
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Here [ is the vertical component of vorticity defined as c = V’$, $ is streamfunction 
such that U = -a$/ay, V= 8$/8x, and V2 is the horizontal Laplacian in x, y. 
DC is dissipation and J denotes the Jacobian determinant J(A, B) = a,A . a,.B - 
a,ka,A. 

Spatial derivatives are calculated by a spectral transform method in which [ is 
expressed as a truncated Fourier expansion, giving periodic boundary conditions in 
x and y. The field is expanded on a set of wavenumbers k = (k,, k,), k2 = k: + k:. 
Timestepping of the Eulerian field is accomplished by a leapfrog scheme except for 
dissipation which is calculated exactly. For operator D,, conventional Laplacian 
dissipation vV2[ is taken, v being a numeric constant. The flow field is expressed on 
Nx M grid points, with N and h4 being powers of 2 (not necessarily the same). 

Dynamics associated with Eq. (1) conserve vorticity along particle paths in the 
absence of dissipation. For the gridded non-continuous case, kinetic energy and 
mean square vorticity are conserved by the spectral method implementation of 
Eq. (1). It is not guaranteed that vorticity will necessarily be conserved along 
particle paths but we will use this as our test invariant. Given this limitation the 
questions to be answered are: 

1. What is the best way to interpolate flow properties (primarily velocity) 
from grid points to the particle positions? 

2. What is the best way to timestep the particle positions? 

Related issues have been examined by Haidvogel [4] in the context of a forced, 
dissipated system on a P-plane in which the nonconservation of vorticity was 
separated into dissipation, forcing and aliasing terms. He concluded that following 
Lagrangian particles would be very difficult due to aliasing errors. These errors 
were found to be dependent on model resolution and kinetic energy spectral rolloff 
rates. The more important issue of contamination of particle statistics was also 
examined. This was done by calculating averaged particle separations as functions 
of model resolution and Haidvogel concluded that particle statistics will be 
dependent on model resolution. 

Given these fundamental limitations, the aim here is to explore differing methods 
under controlled conditions to find the best ways of implementing Lagrangian 
particles. 

SPATIAL INTERPOLATION 

Consider an Eulerian field @(xi, yi) defined on a square grid (xi, yj: i, j= 1, N) 
with corresponding Fourier representation &k,, k,) defined over the truncated 
spectral domain k2 < (N/2)’ = kf. Corresponding intergrid values @(x, y) can be 
found by the slow Fourier transform (SFT), 

@(x, y) = c &k,, k,) . e’(kxlikb-L”, 
k,.k, 

(2) 

where the summation is over all Fourier modes. 
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@(x, y) can also be approximated by using a polynomial lit to nearby grid 
points: 

@(x,.Y)” jJ f @(xi3Yj)Ai,j fi fi (x-x,)b-Yk)? 

i=l ,j=l l=l,l#i k=l.k#j 

(3) 

where m is the number of grid points in the lit m = 2,4,6,8, . . . . the order of fit o 
being one less than m. FI,,~ is given by 

Ai,j= fj fi (x;-xl)(y,-Yk) (4) 
/=l,/#i k=l.k#j 

Because of our use of periodic boundary conditions, o can be chosen to be as 
large as one wishes. We explore these cases, up through o = 7, in order to evaluate 
the dependence of timing and accuracy on o. In many applications where domain 
boundaries will be present, lower orders. (as o = 1) might be chosen to avoid 
influence of points lying outside the flow domain. Higher order fits in the interior 
can be reduced in order (toward o = 1) as the particle approaches the boundary. 

If it is desired to interpolate a velocity field, Eq. (3) can be used in one of two 
ways. U or V can be formed in Fourier space and interpolated by Eq. (3) (the 
“Fourier” method), or Eq. (3) can be differentiated with respect to y or x so that 
U or T/ can be calculated from $ (the “streamfunction” method), e.g., 

u(X, Y)’ -a,$ N - f f Ai,j$(Xir Yj) 
i=I ,=I 

2 ii ii (X-XJ(Y-Yp). 
/=l,l#j k=l,k#i p=l,p#i,l 

(5) 

Taking the SFT as a reference, the polynomial methods can be compared directly 
to it. Two velocity fields were defined from a random phase Fourier initialization, 
one with a kP3 power spectrum and the other with a kp’ spectrum. Thirty-six 

TABLE I 

Relative Times and Accuracies of Interpolation Methods 

Fourier Streamfunction 

Method Time (s) E(k-3) E(k-‘) Time (s) E(k--3) E(k-‘) 

Poly, M = 2 0.01 0.996 x 10 - * 0.124 x 10’ 0.02 0.341 x 10-l 0.205 x 10’ 
Poly, m = 4 0.05 0.401 x 10-Z 0.688 x 10-l 0.10 0.646 x lo-’ 0.111 x IO0 
Poly, M = 6 0.10 0.282 x lo-* 0.533 x 10-l 0.40 0.452x 1O-2 0.896 x 10-l 
Poly, tn = 8 0.21 0.236 x lo-* 0.464 x 10 ’ 1.19 0.371 x 1om2 0.722 x 10-l 

FFT( 1) 0.43 
SFT(36) 6.07 
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particles were released, this number being chosen to permit statistical averaging. 
Average relative error E for 36 velocities interpolated on these fields is 

36 / 36 

E= c (u;- KJ2; 1 uf, 
i= I / ;=, 

where Ui and U,Y are the interpolated and SFT velocities, respectively. Table I 
summarizes the computer times taken for the streamfunction, Fourier, and SFT 
methods with the corresponding accuracies. These interpolations were all performed 
at grid resolution 642 on a VAX785 computer (single precision). The times shown 
for the polynomial interpolations are for the 36 interpolations only. Also shown is 
the time for one 642 fast Fourier transform (FFT) which must be included in the 
total times for the interpolation method. The times for the SFT are for the 36 SFTs. 

The interpolation times for the polynomial fits are roughly quadratic in order of 
lit for the Fourier method. One might expect from Eq. (3) that the times would be 
quartic in number of lit grid points m, but terms can be combined and the calcula- 
tions become relatively more efficient at the higher orders. 

Unless the number of floats is very small the SFT will be slower than any of the 
polynomial fits. The accuracy of the fits are dependent on the order of lit and the 
spectral form of the field to be interpolated. The Fourier method of velocity inter- 
polation is more accurate than the streamfunction method in all cases. Stream- 
function method interpolations are slower than the Fourier method but the overall 
timing comparison depends on how often the FFT must be called. One FFT will 
suffice to calculate II/, U, and I’, using the streamfunction method whereas three 
FFTs are needed for the Fourier method. We will use the Fourier method of 
polynomial interpolation from now on unless otherwise noted. 

Table I also illustrates that a kinetic energy field with a geophysically plausible 
energy spectrum (kP3) will yield velocities which can be interpolated to about 
0.02% error with m = 8 whilst the corresponding vorticity field (k-l) can be inter- 
polated to about an accuracy of 5 % with the same lit parameters. These results are 
also applicable to semi-Lagrangian methods (e.g., Robert [S]). 

TIMESTEPPING METHODS IN FROZEN STREAMFUNCTION FIELDS 

The Eulerian model provides timestepped fields at regular time increments. It 
shall be assumed that a constant timestep interval 6t is desired for integration of the 
particle positions and this timestep will be the same as the Eulerian model. 
Consider a Lagrangian particle at time t to have position x = (x, y) and velocity 
u = u(x) = (U, V) calculated by one of the above methods. The Lagrangian 
timestepping methods considered are: 

1. Euler forward step, 

x(t+&)=x(t)+u(t)6t. (6) 
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2. Huen (predictor-corrector), 

x*(t + at) = x(t) + u(t) 6t 
(7) 

x(t + st) = x(t) + 1/2(u(t) + u*(t)) 6t, 

where u* is calculated at intermediate advanced point x* on the advanced Eulerian 
field. 

3. Fourth-order Runge-Kutta (Press et al. [6]), 

Xl = x + u &/2 

u2 = u(x 11, x2 =x + u2 6t/2 

u3 =4x,), x3=x + u3 6t 

u4 = u(x3) 

X( t + at) = X(t) + dt(u + 2~2 + 2~3 + ~4)/6, (8) 

where u2 and u3 are evaluated at time midpoint (average the two Eulerian fields) 
and u4 is calculated at the advanced Eulerian field. 

4. Robert filtered leapfrog, 

x(t + st) = x(t - dt) + 2u(t) dt, (9) 

where the position at time t is then time filtered (Robert [7]), 

xJ(t) =x(t) - R(x(t + st) - 2x(t) + xqt - dt)) 

with R the Robert filter weight 0 < R < 0.25 and superscript f indicates a filtered 
field. The first timestep calculation is done with a Huen step. 

5. Adams-Bashforth, 

x(t+st)=x(t)+0.5(3u(t)-u(t-6t))& (10) 

where the initial value of u( -ht) is calculated by taking an Euler backward step at 
timestep 0 and computing the velocities at those locations. 

6. Bennett-Clites [S], 

(x “+‘-x~)/~t=U+0.5(~u/ax)(x~+‘-x~)+o.5(aU/~y)(y”+1-yy”) (11) 

(Y n+l- y”)/&= v+o.5(av/vlax)(x”+‘-x”)+o.5(~v-//lay)(y”+’- y”), (12) 

where all derivatives are calculated at timestep n. Equations (11) and (12) yield 
X n+l and yn+l. 

If, instead of integrating Eq. (1 ), the Eulerian motion field II/ is held constant, then 
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TABLE II 

Relative Times and Polynomial Accuracies 
of the Particle Stepping Methods 

Method Time (s) m=2 m=4 m=8 Analytic 

Euler 1.25 0.052 0.052 
Leapfrog 1.25 2.5 x lo-* 2.5 x 10-R 

Adams-Bashforth 1.25 1.6 x 10-s 1.6x lo-’ 
Huen 2.60 9.0 x lo-’ 2.0 x IO -9 2.0 x 1om9 2.0 x 1o-9 

Bennett-Clites 3.24 - 2.1 x 1om9 2.3 x 10 -’ 
Runge-Kutta 5.46 8.5 x LO-l2 5.5 x 1om’2 

particles in such a “frozen field” should trace closed orbits along lines of constant 
streamfunction. To test the timestepping methods a streamfunction of the form 

$(x, Y) = sin(x) sin(y), o<x, y<2lt 

was used. This choice gives us the opportunity of separating interpolation from 
stepping errors as all derivatives in Eqs. (6) to (12) can be evaluated analytically. 
Thirty-six particles were initialized at random locations and integrated until several 
orbits were completed. The timestep interval was chosen so that the fastest particles 
will advance about one-half grid point each timestep. 

The left side of Table II shows the relative times taken for the timestepping 
methods when interpolations were used. These times reflect the amounts necessary 
to calculate all necessary FFTs, interpolation and timestepping of 36 particles. 

Relative stream function error is defined in the same way as for the interpolation 
tests. 

Where $O,i is the initial stream function value and It/i is the measured stream 
function at time t. Figure 1 shows the stream function errors versus integration time 
for the Huen, Runge-Kutta, and Bennett-Clites timesteps. Integration time is the 
sum of the timesteps ht. 

The top left of Fig. 1 also shows a comparison of the order of fit as the dashed 
line uses m = 8 and the dotted line (barely visible) m = 4. The top right uses Huen 
step with m = 2. 

The bottom left of Fig. 1 shows the streamfunction (dotted) and Fourier (dashed) 
methods of calculating u with m = 8 compared to the analytic method. The right 
side of Table II summarizes the accuracies of the polynomials, stepping methods, 
and interpolation. As is seen there is not much difference between the results for 
m = 4 and m = 8, but there is quite a difference between m = 2 (bilinear) and m = 4 
(bicubic) for this case. The Fourier method of calculating II performs marginally 
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time 
0.0 10.0 

time 
.D 

FIG. 1. The average relative streamfunction errors versus integration time for the frozen field case. 
All the solid curves in this and Fig. 2 use exact analytic forms of derivatives. Timestepping methods are 
Huen (top), fourth-order Rung+Kutta (bottom left), and Bennett-Clites (bottom right). See text for a 
description of the other curves. 

better than the streamfunction method and interpolation errors can only be seen in 
the most accurate timestepping methods. 

Figure 2 shows Adams-Bashforth, Euler, and leapfrog timestepping with and 
without a Robert filter. Also shown (top left) are the results using the SFT (dashed) 
and m = 8 polynomial (dotted, barely visible). The SFT is obviously no better than 
polynomial interpolation for this case. 

To no surprise the accuracy of the timestepping methods goes as the theoretical 
order of accuracy. Runge-Kutta (fourth-order accurate) is best and Euler (lirst- 
order) is worst. The leapfrog method with no filtering has an oscillatory mode (note 
the thickness of the error curve) and is comparable in accuracy to the 
Adams-Bashforth (both are second-order accurate). The addition of a Robert filter 
makes the leapfrog method worse in accuracy but suppresses the oscillation. 

Leapfrog timestepping is widely used for integration of the Eulerian field equa- 
tions due to its efficiency and accuracy (Haltiner and Williams [9]). In part this is 
because the computational (oscillatory) mode is neutrally stable with respect to 
advection or wave propagation. One might think that the advantages of leapfrog 
should carry over to Lagrangian particle advection, but this is not so. Although the 
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time time 

FIG. 2. Streamfunction errors as Fig. 1 for Adams-Bashforth (top left), Euler 
frog (bottom) with Robert filter weights of 0. (left) and 0.1 (right). 

(top right), and leap- 

equation of motion for Lagrangian particles is only “advection,” the operator is 
different and has very different stability properties. Consider a simple Eulerian flow: 

$=xy; hence U= -xand V= y. 

Although the motion is a simple advection, components of particle position satisfy 

dx -c-X’ dy 
dt ’ z= Y, 

i.e., “friction’‘-type equations for which leapfrog is unconditionally unstable. The 
particular stagnation flow illustrated here may not occur in any particular Eulerian 
field simulation; rather, the point is that a method which may be quite suitable for 
Eulerian advection can fail dramatically for Lagrangian advection. 

TIMESTEPPING METHODS IN AN EVOLVING VORTICITY FIELD 

The frozen field case has both a strength and a weakness in that the motion fields 
are not timestepped. Errors will not be introduced into the particle calculations by 
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FIG. 3. The initial (top) and final (bottom) streamfunctions (left) and vorticities (right) for vorticity 
following experiments. 

stepping the fields. In practice, models do have to be timestepped and the resultant 
effects on particles may be important. 

In this section the conservation of vorticity on particle paths in the presence of 
an evolving Eulerian flow field is considered. Comparison runs were performed on 
an identical flow field at grid size 642 with particles released at identical points and 
times while altering only the particle interpolation and stepping methods. Figure 3 
shows the start and end streamfunction and vorticity fields for these cases; Fig. 4 
shows the start and end energy spectra. In these figures and in the following text, 
time t is non-dimensionalized by r.m.s. vorticity as r = i,,,,, t. 

In order to prepare a satisfactory stream function field to initialize the runs, 
forcing was added to the Eulerian evolution equation, Eq. (1). The form of the 
forcing used to bring about statistical stationarity was an isotropic, random phase, 
low wavenumber spectrum. A Robert filter was applied to the Eulerian leapfrog 
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I r ,,,I,,, 9 
10" k IO' 

FIG. 4. The initial (solid) and final (dashed) energy spectra plotted versus total wavenumber for the 
cases shown in Fig. 3. 

timestepping to suppress the leapfrog mode introduced by the forcing. The runs 
shown in Fig. 3 and 4 were initialized from that field but included no forcing or 
Eulerian Robert filering. They were hence viscous rundown experiments with 
enstrophy (mean square vorticity) decaying about 25% over the course of the 
experiments (5~ time units). 

From the analytic description of the dissipation, values of vV2[ can be calculated 
and interpolated to particle positions. Initial particle vorticities i(O, x0, y,) can be 
corrected for dissipation at each timestep yielding the theoretical decayed vorticity 
{‘(t, x, v). This can be compared to the vorticity calculated at the particle ((1, x, v) 
yielding vorticity error si(f) at particle i given by 

&i(t) = i,(G x2 Y) - ix& x, Y) (13) 

~:(~,X,Y)=~~(O,XO,~O)+V ‘V’i,(t’,~‘,~‘)dl’; I (14) 
0 

x’ and y’ are at the particle position at time t’ and x0, y, are initial positions. This 
error is then expressed as 

E(t)= f E,(t)2 
l’ 

f [f. 
i=l i= I 

VORTICITY ERRORS DUE TO INTERPOLATION METHOD 

Thirty-six particles were released in a regular 6 x 6 grid into the turbulence field 
and the particle parameters were calculated using either the SFT or polynomial fits. 
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0.0 0.1 6.2 0.3 0.4 6.5 d.6 d.7 d.8 6.9 110 

x/2?r 

tracks for particles placed in the evolving flows. The case shown utilized m = 8 and FIG. 5. The float 
a Huen timestep. The small dots represent the release points. 

time(7) 

FIG. 6. The relative enstrophy error of the evolving flow field plotted versus r for polynomial tits 
with m = 2 (solid), m = 4 (dashed), and m = 6 (dotted), and the slow Fourier transform (broken solid). 
All used Huen timestepping. 

SSl/SS/l-8 
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Figure 5 shows the particle track paths for a run using a polynomial lit parameter 
of 8. The timestepping method used for the case shown in Fig. 5 was the Huen. 

Figure 6 illustrates the average relative vorticity errors associated with the SFT 
and three values of interpolation order. As is seen in Fig. 6, it is difficult to discern 
much difference between interpolation methods and an order of lit of 1 (m = 2) is 
as good as higher orders of fit or the SFT. 

VORTICITY ERRORS DUE TO TIMESTEPPING METHOD 

Using an interpolation with m = 4 on the same flow field as used in the previous 
section, Fig. 7 shows the average relative vorticity errors versus time for four of the 
timestepping methods. The same plot for the other stepping methods cases looks 
almost the same. It appears that the interpolation and timestepping methods 
for particles in 2D turbulence are largely irrelevant. The error growth that is 
independent of timestepping method exceeds any differences which may be obtained 
from ensemble averaging of the individual methods. 

In summary we observe that using realistic Eulerian parameters from an eddy 
active model, an average of 1% of particle vorticity variance per r is not followed 
for this case and no interpolation or timestepping method can minimize this loss. 

FIG. 7. Relative enstrophy error plots for the evolving flow field as Fig. 6 for the Euler (solid), leap- 
frog (R=O.) (dashed), Bennett-Clites (dotted), and Rung+Kutta (broken solid) timesteps. All used a 
polynomial tit with m = 4. 
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ORIGIN OF THE VORTICITY ERROR 

Haidvogel [4] anticipated the difficulties in particle following experienced in the 
previous section. Vorticity conservation following a particle is a property of the 
continuum Eulerian field equations. Truncating the Fourier representation of the 
Eulerian model at some cutoff wavenumber should not be expected to retain 

k 

FIG. 8. The final streamfunction (left), vorticity (center), and energy spectrum (right dashed) for the 
256* case. The solid curve in the energy spectrum plot is for the end of the 642 case. 
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Lagrangian information (only a subset of properties, usually energy and enstrophy, 
of the Eulerian equations are retained by various means). This problem arises from 
the Jacobian J($, [) which, in absence of cutoff, would project to higher wave- 
numbers. The impact of omitting such interactions can be explored as follows: 

Consider what happens when the simulations of the previous section performed 
at 64* are repeated at resolutions 1282 or 256*. Figure 8 shows the end state stream- 
function, vorticity and energy spectra for the 2562 case after r = 4.5. Also overlayed 
on the energy spectra plot is the result from the 642 case. Visually, Fig. 8 and the 
end states of Fig. 3 are similar at the large scales but differ in the small scale 
behaviour. 

The vorticity error plots for the higher resolution cases are shown in Fig. 9 and 
the improvement from the previous section is dramatic. Also shown in Fig. 9 are the 
vorticity errors from cases started from mature 1282 and 2562 start states. The 1282 
case initialized from the 64’ field tracks the floats quite well until about z = 1, at 
which time the error slope becomes about equal to the other 128* case. This is the 
time it has taken for vorticity variance to move into the upper half of Fourier space 
and for particle following errors to appear. Correspondingly, the 256* case started 
from a 642 mature endstate takes about r = 2 time units to fill out. 

The cause of the vorticity error in the 642 case is a resolution problem. Nonlinear 
dynamics tend to transfer vorticity variance into smaller scales. If the smaller scales 
do not exist, those wavenumber interactions are suppressed and the physics is not 
adequately represented. Haidvogel recommended that the upper half of wavenumber 
space be depleted of energy to ensure the alias error be insignificant. In practice, as 

time(T) time(T1 

FIG. 9. The average relative enstrophy error versus 7 for 128’ (left) and 2562 (right) cases. The solid 
lines represent cases started from the 64* field and the dashed lines represent cases begun from mature 
states at each resolution. 
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time progresses, the wavenumber spectrum will fill out and similar truncation errors 
will then appear at the smaller scales. As seen in Fig. 9 there will still be (reduced) 
error growth unless there is sufficient damping. 

Defining a truncation error to be C(J, -51)2/.ZJz, where J, is the Jacobian 
performed at resolution 64* and J2 is performed at twice the resolution with the 
summation over all real space, the value obtained is 0.03, which is of the same 
order as the error growth rate (0.015/z) in the 642 cases. The truncation error was 
calculated at the start of the simulation when the upper half of wavenumber space 
in the 128* case was empty. 

To relate vorticity nonconservation to the parameters of the Eulerian model, one 
may form a “truncation” (or “grid-scale”) Reynolds number Re = u, .1,/v = 
irms/v. kf , where k, is the truncation wavenumber, I, = l/k,, and U, = i,,, . 1,. Then 
it is seen that the error variance growth rates from Fig. 6 and 9 (rates 0.015, 0.002, 
and 0.00002 per T) decrease with decreasing grid-scale Reynolds number. 

One might regard vorticity nonconservation by 10% or more in unit nondimen- 
sional time T (i.e., J’o.015 from Fig. 6) as a disturbing loss of skill. However, this 
should also be interpreted from the view of how large is a typical error in particle 
position. For the three relative error variance growth rates given above, and given 
i rms x 5 in each case, the r.m.s. vorticity errors after unit time are about 0.5, 0.2, and 
0.03. For each of the cases, r.m.s. gradients of [ fall in the range 20 to 30. Thus 
actual positional errors are typically 0.03, 0.01, and 0.001. The grid spacing for 
these three cases is n/kt, roughly 0.1, 0.05, and 0.025, so that positional errors 
expressed as a fraction of grid spacing are 0.3, 0.2, and 0.04. In terms of accurate 
position information following the particles, the error appears to be significantly 
less than one grid space after unit nondimensional time even for grid-scale Re some- 
what larger than unity. Greater skill at particle following can be achieved by 
executing at smaller truncation Re. 

CONCLUSIONS 

Errors due to the interpolation of a real space field by polynomial fitting are 
dependent on the spectral form of the field and the order of tit. Evaluating velocities 
from interpolated streamfunction fields is not as accurate as forming velocities in 
Fourier space and then interpolating directly. 

A frozen (steady) flow field in which derivatives can be evaluated analytically has 
been used to demonstrate that an Euler forward step is a poor choice for a 
timestepping method while a fourth-order Runge-Kutta scheme gives best stream 
function following errors. Errors due to interpolation are only observable for the 
most accurate timestepping methods. A Robert filter tends to degrade the perfor- 
mance of leapfrog timestepping for the Lagrangian particles; however, Lagrangian 
leapfrog timestepping may exhibit an unconditionally unstable computational mode 
under circumstances where the leapfrog is neutrally stable in the Eulerian field 
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equations. For the frozen streamfunction field, an order of lit 3 gives almost identi- 
cal results to one of 7, while an order of fit 1 is not as accurate. 

For evolving fields in which the subgrid Reynolds number is of order unity, the 
choice of interpolation and timestepping is largely irrelevant due to the presence of 
errors introduced by finite resolution of the 2D Eulerian dynamics. These vorticity 
following errors can be limited by increasing model resolution or viscosity. Rough 
estimates of vorticity error growth predictions for an existing model can be made 
by calculating an untruncated Jacobian and comparing it to the truncated 
Jacobian. 

To include particles in an eddy active flow, the modeller is faced with choices. 
Depending upon the intended accuracy to which positions or vorticity balances at 
particles are required, either (1) parameters of the Eulerian model may need to be 
constrained, or (2) model resolution may have to be increased for any given set of 
flow parameters. In many applications, the major source of error for particles will 
be determined by truncation of nonlinear interactions on account of finite resolu- 
tion. When particle accuracy is so limited by resolution, then relatively crude (but 
inexpensive) interpolation and timestepping methods may be used. The errors 
incurred by limited resolution can be most dramatic in terms of inaccurate vorticity 
balances following particles while positional errors are relatively small. Improving 
the vorticity balances requires that small scale structures of the Eulerian flows be 
more strongly damped, a criterion that corresponds to setting a grid-scale Reynolds 
number to values rather less than unity. 
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